Algebra II 1-3

I-3 Basic Properties of Real Numbers

Properties of Equality			
Property	Description		
ReFlexive	XER, then X=X		
Symmetric	x,y eR iF x=y, then y=x		
Transitive	xy,zeR then x=z		
Addition	xyzeR if x= y then x+Z=y+Z		
Multiplication	X, Y, Z CR iF X=Y Hen XZ=YZ		

Field Properties			
Name	Addition	Multiplication	
Closure	;F X, y ER then (x+y) ER	iF x,y ∈R then xy ∈R	
Commutati	*>9 €R ^R X+9= Y+X	×,y eR Xy=yX	
Associative	≫y, z ∈ ℝ (≈+y)+Z = ×+(y+Z)	×,y,2 ∈R (xy)z = ×(yz)	
Identity	X e R X+0=X	XeR X·1=X	
Inverse	X e k X + (-x) = 0	x€R,x≠0 ×(↓)*	
Distributio	e xyzeR x(y+1	z)= XY+XZ	

Closure				
Determine whether the following set is closed $\{0, 1\}$ Closed Not Closed Determine whether the following set is closed $\{0, 1\}$ Closed $\{0, 1\}$ $\{0, 1\}$ $\{0,$	Hunder addition. $ \begin{array}{c} 0+0=0\\ 0+1=1\\ 1+0=1\\ 1+0=1\\ 1+1=2\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1=0\\ 1\\ 0\\ 0\\ 0\\ 1=0\\ 0\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$			

23) Show that if $3x + (-12) = 0$ then $x = 4$ by justifying each indicated ste	'n
25^{2} (12) = 0 Circm	P
5x + (-12) = 0 Given	
[3x + (-12)] + 12 = 0 + 12 a) addition prop =	
3x + [(-12) + 12] = 0 + 12 b) associative +	
3x+0=0+12 c) inverse +	
3x = 12 d) identity +	
$\frac{1}{3}(3x) = \frac{1}{3}(12)$, e) multiplication prop	۲
$\frac{1}{3}(3x) = 4$ substitution	
$(\frac{1}{3},3)x = 4$ f) associative X	
ix = 4 g) inverse ×	
x=4 h) identity	

